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SUBSTRUCTURE PRECONDITIONERS 
FOR ELLIPTIC SADDLE POINT PROBLEMS 

TORGEIR RUSTEN AND RAGNAR WINTHER 

ABSTRACT. Domain decomposition preconditioners for the linear systems aris- 
ing from mixed finite element discretizations of second-order elliptic boundary 
value problems are proposed. The preconditioners are based on subproblems 
with either Neumann or Dirichlet boundary conditions on the interior bound- 
ary. The preconditioned systems have the same structure as the nonprecon- 
ditioned systems. In particular, we shall derive a preconditioned system with 
conditioning independent of the mesh parameter h. The application of the 
minimum residual method to the preconditioned systems is also discussed. 

1. INTRODUCTION 

The purpose of this paper is to propose domain decomposition techniques for 
elliptic saddle point problems. Here, elliptic saddle point problems refers to the 
discrete systems resulting from mixed finite element discretizations of second- 
order elliptic boundary value problems. We study a preconditioned iterative 
method for these systems where a decomposition of the domain into simpler 
substructures is utilized in order to construct the preconditioners. 

Let Q c 1R2 be a polygonal domain, and let aQ denote the boundary. We 
consider the Dirichlet problem 

-V * K(x)Vp = f in Q, 
p = g on aQ, 

where f and g are given functions. The matrix K(x) is assumed to be sym- 
metric and uniformly positive definite on Q. 

If this boundary value problem is discretized by a conforming finite element 
method, we obtain a linear system with a symmetric and positive definite coef- 
ficient matrix. However, the coefficient matrix is not well conditioned. If the 
dimension of the system is sufficiently large, the system has to be solved by an 
iterative method. In order to obtain a well-conditioned system, and hence fast 
convergence of the iterative method, preconditioning of the system is necessary. 
The behavior of an iterative method, therefore, depends on the construction of 
easily invertible preconditioners. 
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The most common iterative method for the discrete systems arising from 
a conforming finite element discretization of boundary value problems of the 
form (1.1) is the preconditioned conjugate gradient method. The convergence 
properties of the basic iterative method is well understood, and the construc- 
tion of preconditioners has been intensively studied. This has resulted in very 
effective iterative methods for such systems. 

The use of incomplete factorization as preconditioners for discrete elliptic 
equations is a well-established technique. One advantage with these precon- 
ditioners is that they are usually very easy to implement. Furthermore, both 
theory and experiments show that these preconditioners can be rather effective. 
For a more precise description of these preconditioners and their performance 
we refer, for example, to [1, 12, 23]. 

Another approach to effective preconditioners is based on substructuring or 
domain decomposition. The main idea behind these constructions is to de- 
compose the domain Q into simpler substructures such that certain discrete 
elliptic systems can be solved by a fast solver on these subdomains. The com- 
plete preconditioner is then constructed by a proper composition of these fast 
subsolvers. From a theoretical point of view these sophisticated constructions 
are very attractive, since one may obtain convergence rates independent of the 
number of unknowns. As a consequence, the work required to obtain a certain 
accuracy will essentially be proportional to the number of unknowns. We refer 
to [3, 4, 6, 7, 21], and references given there, for a more detailed discussion of 
domain decomposition methods applied to the discrete equations arising from 
a conforming finite element method. 

Even though a conforming finite element discretization seems to be the ob- 
vious approach to second-order elliptic boundary value problems of the form 
( 1.1), there are applications where the discretization by a mixed finite element 
method may be desirable. In some problems the gradient of the solution is 
the variable of primary interest. This is the case, for example, for the pres- 
sure equation in the coupled system modeling incompressible two-phase flow 
in porous media (cf., e.g., [2]). In this case, p is the pressure, K corresponds 
to the mobility matrix, and the most important variable is the Darcy velocity 
given by -KVp. If a conforming finite element method is used to discretize 
the pressure equation, the Darcy velocity is derived by performing a numerical 
differentiation on the computed pressure. Hence, some of the accuracy of the 
numerical solution is lost. On the other hand, if a mixed finite element method 
is used to discretize the pressure equation, the pressure and the Darcy velocity 
can be computed simultaneously from the discrete system, and with the same 
degree of accuracy. The use of a mixed finite element method for the discretiza- 
tion of the pressure equation has therefore been suggested by many authors, cf. 
[13, 15, 26]. 

The discretization of the elliptic boundary value problem (1. 1) by the mixed 
finite element method leads to a discrete system with a saddle point structure 
of the form 

(1.2) A 
_+Bn . 

Here, A e RImxm is symmetric and positive definite, B E RmxI with n < m, 
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and B has full rank, i.e., rank(B) = n. It is well known that systems of the 
form (1.2) have a unique solution 4 E Rim and j E RI. Furthermore, the 
coefficient matrix v of system (1.2), given by 

(1.3) =V (BT ) 

is symmetric, nonsingular, and indefinite. 
Since the coefficient matrix of the discrete system is indefinite, the construc- 

tion of effective iterative methods for the discrete system (1.2) is not as well 
studied as for systems arising from a conforming finite element method. How- 
ever, if the matrix A can be easily inverted, then the system (1.2) can be essen- 
tially reduced to two positive definite systems by a block elimination procedure. 
The variable j satisfies the system 

(1.4) BTA-lBn = BTA-l b - c. 

If we first compute j from (1.4), then the variable 4 can thereafter be obtained 
from the first equation of (1.2). Hence, in this case standard iterative methods 
for positive definite systems can be applied. We refer for example to [14, 17] 
for this approach to the solution of linear systems obtained from mixed finite 
element discretizations of systems of the form ( 1.1). 

However, in many practical computations the matrix A cannot be easily in- 
verted. For example, this is usually the case for the pressure equation arising in 
the modeling of flow in porous media, when the mobility matrix K is nondiag- 
onal. In such cases the equation (1.4) has to be solved by an iterative method 
with an inner and an outer iteration. As illustrated in [27], such two-level meth- 
ods may be numerically unstable. In order to avoid such problems, it seems to 
be more attractive to design a preconditioned iterative method directly for the 
symmetric, indefinite system (1.2). Such an approach is discussed in [27]. The 
basic iterative method is the minimum residual method, which was first pro- 
posed by Paige and Saunders [24] for general symmetric systems. In addition, 
the block structure of the saddle point problems (1.2) is utilized in order to 
construct effective preconditioners. 

We should mention here that an alternative approach to the design of iter- 
ative methods for systems of the form (1.2) is discussed in [5]. The methods 
considered there are derived from a positive definite reformulation of the sys- 
tem. However, in the present paper we shall only consider the preconditioned 
minimum residual method developed in [27]. 

As established in [27], the convergence rate of the minimum residual method 
applied to a system of the form (1.2) is dominated by three parameters. These 
are the condition numbers of A and B, and a third parameter measuring the 
relative scaling between them. Hence, if A and B are properly scaled, the 
purpose of an effective preconditioner is to improve the conditioning of each 
of the two matrices. 

When the system (1.2) is derived from mixed finite element discretization 
of second-order elliptic equations of the form (1.1), the condition number of 
the matrix A is dominated by the behavior of the coefficient matrix K (cf. 
?2). Hence, if K is well conditioned uniformly in x, then A is also well 
conditioned. Therefore, the purpose of a preconditioner for this system is to 
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improve the conditioning of B. However, B is a discrete gradient operator and 
BTB is a discrete Laplacian. A preconditioner for the matrix B, and hence 
a complete preconditioner for (1.3), can therefore be derived from a suitable 
preconditioner for a discrete Laplace operator. 

In [27] the preconditioned minimum residual method is applied, in particu- 
lar, to the discrete systems obtained from mixed finite element discretizations 
of second-order elliptic problems of the form (1. 1). The preconditioners stud- 
ied there were constructed either by incomplete factorization procedures or by 
the use of fast solvers for an associated constant-coefficient problem on the 
domain Q. The purpose of the present paper is to extend this study to the 
applications of preconditioners constructed by fast solvers associated with the 
different substructures of the domain, i.e., to preconditioners constructed by 
domain decomposition. 

It is appropriate to mention here that Glowinski and Wheeler [19] and 
Mathew [22] have previously studied preconditioning by domain decomposi- 
tion for the discrete systems obtained by mixed finite element formulations of 
problems like (1.1). However, their approach requires that the discrete system 
can be solved exactly by a fast direct method on the subdomains. By these 
subdomain solvers the discrete saddle point problem is reduced to a symmetric, 
positive definite system on the interior boundary, and hence the preconditioned 
conjugate gradient method can be applied. However, for variable-coefficient 
problems it will usually not be possible to solve the subdomain problems ex- 
actly. Therefore, such a reduction of the system to positive definite form is not 
possible. 

The approach taken in this paper only requires that a fast solver exists for 
certain related (constant-coefficient) problems on each subdomain. These sub- 
solvers are then used to construct preconditioners for the discrete system, i.e., 
to transform the system into a new system of the form (1.2), but where the 
proper condition number of the matrix B is reduced. 

In ?2 we give a brief review of the mixed finite element method for elliptic 
boundary value problems of the form (1.1). In ?3 we state the assumptions 
that will be made on the domain Q and on the finite element spaces, while the 
general formulation of the preconditioned minimum residual method for saddle 
point problems is reviewed in ?4. The domain decomposition preconditioners 
are presented in ??5 and 6. In ?5 we study a preconditioner which is based 
on subproblems with Neumann boundary condition on the interior boundary. 
We establish that this method leads to a reduction in the proper condition 
number from O(h-1) to O(h- 1/2). Here the parameter h corresponds to 
the grid size. As an alternative, we study in ?6 a preconditioner based on 
subproblems with Dirichlet boundary condition. This method can be considered 
as a mixed analog of the method studied by Bramble, Pasciak, and Schatz [6, 7] 
for conforming finite elements (cf. also Bj0rstad and Widlund [3]). A main tool 
in the techniques developed in [7] is to utilize the fact that a decomposition 
of the system into Dirichlet problems on the subdomains corresponds to an 
orthogonal decomposition of the solution. We derive a similar property for 
a generalized mixed finite element solution. From this property we design a 
preconditioner which is optimal (i.e., the condition number is independent of 
h) also for problems with variable coefficients. Finally, in ?7 we present some 
numerical experiments which confirm our theoretical results. 
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2. THE MIXED FINITE ELEMENT METHOD 

In this section we give a brief review of the mixed finite element method 
for elliptic boundary value problems of the form (1.1). For a more detailed 
discussion of this topic we refer to [8, 16, 25]. 

We recall that the matrix K(x) E Ri2X2 is assumed to be bounded and uni- 
formly positive definite on Q, i.e., there exist positive constants To and T 
such that the inequalities 

(2.1) TokI2 < K(x)4.4 < T1|I2 

hold for all x E Q and for all 4 E Ri2, where I denotes the Euclidean norm 
on R2. 

The mixed finite element method is derived from a reformulation of the 
equation (1. 1), where the function u = -KVp is introduced as a new unknown 
variable. The elliptic equation (1. 1) can then be rewritten as a system consisting 
of the equations 

u+KVp = 0, 
Vu = f, 

in Q, together with the boundary condition 

p = g on oQ. 

In order to give a precise formulation of this system, we need some notation. 
We will use ( *, * ) to denote the inner products on L2(Q) and I I - to denote 
the corresponding norm. For convenience, we also use the same notation for the 
norm and inner product on the product space (L2(Q))2. Furthermore, 11 - Ildiv 
will denote the norm on H(div, Q) . Here, H(div, Q) c (L2(Q))2 is the space 
of all vectors v E (L2(Q))2 such that V * v E L2(Q), and the norm is given by 

||V l = IIV 112 + IIV*v 112. 

The normal component on the boundary aQ of a function v E H(div, Q) is 
denoted by v * no, where no is the unit outward normal to aQ . It is well known 
that this normal trace operator is a continuous operator from H(div, Q) into 
the Sobolev space H-1/2(aQ) . The space H-1/2(aQ) is the dual space of the 
fractional Sobolev space H1/2(OQ) of functions defined on the boundary aQ. 
We denote by l'I-1/2,o9 and l'I1/2,o9 the norms on these boundary spaces, 
and by ( *, * )0Q the duality pairing between them. We refer to [ 18] for more 
details on the different function spaces introduced above. The given functions 
f and g in (1.1) are supposed to be in L2(Q) and H1/2(OQ), respectively. 
The usual mixed formulation of (1.1) now reads: 

Find (u, p) E H(div, Q) x L2(Q) such that 

(2.2) a(u,v)+b(v,p)=G(v) VvEH(div,Q), 
(2.2) b(u, q) =F(q) Vq E L2(Q). 
Here, the bilinear forms a: H(div, Q) x H(div, Q) :-* RD and b: H(div, Q) x 
L 2 

(Q) D R are defined by 

(2.3) a(v, w) = (K(x)-1v, w) and b(v, q) = -(V.v, q), 

and the linear functionals F: L2(Q) :-* R and G: H(div, Q) :-* Ri are defined 
by 

F(q) = -(f, q) and G(v) = -(g, v.no)s0n. 
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This is an example of a variational problem with a saddle point structure. Such 
problems are discussed, for example, in [8, 18]. From the general theory of 
such problems it follows that there exists a unique solution (u, p) of (2.2). 
Note that in this formulation the Dirichlet boundary condition p = g on OQ 
is a natural boundary condition. As a consequence, the boundary condition is 
fulfilled only in the weak sense. 

The variational formulation (2.2) is the basis for the formulation of the mixed 
finite element method for (1.1). In order to approximate u and p, we choose 
finite-dimensional subspaces V = Vh c H(div, Q) and Q = Qh C L2(Q)- 
Here, h E (0, 1] is a discretization parameter, typically taken to be a measure 
of the size of the elements generating the spaces V and Q. The approximation 
(Uh, Ph) of (u, p) is required to be an element of the space V x Q. The spaces 
V and Q are typically taken to be finite element spaces, constructed from basis 
functions which are piecewise polynomials. For details on the construction of 
suitable finite element spaces V and Q for a general domain Q we refer to 
[9, 10, 11, 25]. 

When the spaces V and Q are constructed, the approximation (Uh, Ph) E 
V x Q is determined by the linear system 

(2.4) a(uh, v) + b(v, ph) = G(v) Vv E V, 
b(uh, q) = F(q) Vq E Q. 

If the basis functions for the finite element spaces V and Q are introduced, 
this system is exactly of the form (1.2). 

However, in order to obtain a stable numerical method, the spaces V and Q 
have to be properly balanced. This is expressed by a so-called inf-sup condition, 
i.e., there exists a constant y, independent of h, such that 

(2.5) inf sup b(v , q) > > O 

Roughly, this condition expresses that if the "pressure space" Q has been cho- 
sen, then the "velocity space" V has to be taken sufficiently large. In addition, 
the spaces V and Q have to be chosen such that 

(2.6) sup b(v, q) > 0 
qEQ 

for all v E V with V * v :$ 0. The two conditions (2.5) and (2.6) are sufficient 
to guarantee the stability of the mixed finite element method. In particular, 
the discrete system (2.4) has a unique solution. Furthermore, the numerical 
solution (Uh, Ph) satisfies a stability estimate of the form (cf. [8, 25]) 

(2.7) |lUhlHdiv + llqh ? c( ullldiv + llqll), 
where (u, p) denotes the corresponding solution of (2.2) and c is a constant 
independent of the solutions and the discretization parameter h. 

In order to construct preconditioners for the discrete systems by domain 
decomposition, the spaces V and Q also have to be properly related to the 
decomposition of the domain. These conditions on the finite element spaces 
will be discussed in ?3. 

3. DOMAIN DECOMPOSITION 

In this section we first describe the decomposition properties of the domain 
Q. We will also specify the required assumptions on the finite element spaces 
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V and Q. These assumptions, which in particular imply the desired conditions 
(2.5) and (2.6), will be utilized later in order to construct preconditioners for 
the discrete saddle point problem (2.4). In ?7 we will present some examples 
where all the assumptions on V and Q given here will be verified. 

Throughout this paper, we will assume that the domain Q is a union of two 
nonoverlapping subdomains, denoted by Q I and Q2, with a common boundary 
F. Furthermore, we also assume that both &Q1 n OQ and aQ2n a Q have 
positive measures. Here, aQi denotes the boundary of Qi, and we assume 
that F consists of one or more line segments with both endpoints on aQ. An 
example of a domain, divided into subdomains as specified above, is given in 
Figure 3.1. Examples of more complex regions are given, e.g., in [3, 7]. 

The preconditioners studied below will be constructed from exact solvers 
of related discrete elliptic problems on the subdomains Qi. A basic implicit 
assumption is therefore that the subdomains have a simple geometry such that 
these elliptic subsolvers are sufficiently fast. 

In addition to the function spaces introduced in ?2 above, we will also need 
some spaces related to the interior boundary F. The space of square integrable 
functions with respect to the arc length of F will be denoted by L2(F), and 
( , *)r is the associated inner product. If H1(F) is the corresponding first- 
order Sobolev space on F, we let 

Ho(F) ={eH(F): = Oat oQ}. 

Furthermore, HJ2 (F) will denote the interpolation space halfway between 
L2(F) and Ho (F) . (This space is frequently denoted Ho o(F), c.f. [6] or [20].) 
The dual space of Hol2(F) with respect to ( , )r will be denoted H-1/2(]F) 
The norm on the space HI (F) is denoted by . , where the subscript 0 is 
dropped if 0 = 0. 

The unit normal vector on the interior boundary F, exterior to the subdo- 
main Qi, will be denoted vi for i = 1, 2. If v E H(div, Qj), then v * vi will 
denote the corresponding scalar function on F. Here the values of v on F are 

I 1r 

Q2 
U 

Q, 

FIGURE 3. 1. An L-shaped domain Q divided into two 
subdomains 
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derived from the domain Qi . We recall from [18] that the map 
(3.1) vvvi 
is continuous as a map from H(div, Qi) into H-1/2(r). If v E H(div, QI) ED 
H(div, Q2), we let [v * v] be the jump of these traces, i.e., 

[V* V] = V V2 +v VI - 

On the other hand, if v E H(div, Q), the trace v * v2 = -v * v1 is denoted by 
v * v. Hence, the unit normal vector v = v2 has been chosen such that it is 
pointing into Q1 (cf. Figure 3.1). 

Throughout the paper, the discrete "pressure space" Q = Qh is assumed 
to be of the form Q = Qi ED Q2, where Qi c L2(Q1). This corresponds to 
the requirement that the interior boundary F is a "mesh-line" for the grid 
generating the space Q. Similarly, we assume that V1 = V1 h and V2 = V2,h 
are finite element spaces such that 

Vi cH(div, Qi) 

and we let V c H(div, Q,>) E H(div, Q2) be given by V = V1E V2. We observe 
that 

H(div, Q) = {v E H(div, Q,) ED H(div, 02): [v * v] = O} 
The desired finite element space V occurring in the system (2.4) is similarly 
given by 

V= {v E V : [v.v]= O}, 

where obviously V c H(div, Q). However, the larger space V will be used in 
?6 in order to construct a preconditioner for (2.4). 

We also introduce spaces consisting of the normal components of the traces 
on F of functions in Vi. We let Si = Si, h (F) be the linear spaces given by 
Si = {v * vi: v E Vi}. We will assume throughout this paper that SI = S2, and 
this linear space will be denoted S = Sh(F). We observe that it follows from 
the continuity property of the map (3.1) that S c H-12 (r) . We shall in fact 
assume that S c L2(r). This will usually always be the case, since in practice 
S typically consists of discontinuous piecewise polynomials. 

In order to describe some of the preconditioners below we will also need 
a space of continuous functions on F. Associated with the space Sh (F), the 
existence of finite element subspaces S* = S* (F) of Ho (F) is assumed. If S 
is a space of piecewise constants, then S* will typically consist of continuous 
piecewise linear functions. The spaces S and S* are assumed to be related 
such that for any nonzero element X E S 

(3.2) sup (,u, X)r > . 
YES* 

We observe that (3.2) in particular implies that dim(S*) > dim(S). 
The spaces V, Q, and S* will also be assumed to be related such that a 

proper interpolation operator exists. The desired "inf-sup" condition (2.5) will 
then be derived from this interpolation property. We assume that there exists a 
family of interpolation operators 11 = Ilh from H(div, Q1) E H(div, Q2) into 
V, bounded uniformly in h, such that 

2 

(3.3) b(fv-v, q) + ?((J1v - v) * Vi, /ui)r = 0 V(q, /Ml, Yu2) E Q x S* x S* 
i=1 
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Here, b is the extension of the bilinear form b given by 

b(v, q) = JqV*vdx- JqV.vdx. 
Ql Q~~~~~~~2 

We observe that (3.2) and (3.3) imply that if v E H(div, Q), then flv E V. 
Furthermore, for any v E H(div, Q), 

b(Hv-v,q)=O VqeQ. 

Hence, condition (2.5) follows from the fact that this condition holds with the 
space V replaced by H(div, Q) (cf. [16]). 

We shall also require that (2.6) holds on each subdomain, i.e., 

(3.4) supb(v, q) > O 
qEQ 

for all v e V with V. v : O. 
Finally, we assume that the velocity space V satisfies an "inverse inequality" 

of the form 

(3.5) Iv . v12 < ch-1 IIv 112 Vv E V. 

Such an inequality typically holds if the finite element space V is constructed 
on a uniform or quasi-uniform grid. 

4. THE PRECONDITIONED ITERATIVE METHOD 

In this section we shall describe the preconditioned minimum residual method 
for saddle point problems of the form (1.2), and discuss the application of this 
method to the solution of linear systems of the form (2.4). Throughout this 
section, (*, *) denotes an inner product on RI and RI , and I I denotes the 
corresponding norms. 

Recall that the coefficient matrix of the linear system (1.2) is given by 

(4.1) Jv 
A 

( O) 

where A E Rimxm and B E Rmxn with rank(B) = n. Furthermore, A is 
symmetric and positive definite, and BT is the transpose of B with respect to 
the given inner products. 

The minimum residual method is an iterative method for general symmetric, 
nonsingular systems. Consider a system of the form - = f,* and, for k > 1, 
let Vk denote the Krylov space 

Vk = span{,fl,v,fl, J.k-lfi}. 

The approximation ak E Vk of a*, obtained after k - 1 iterations, is uniquely 
determined by the residual property 

(4. 2) 1 4 - v Wak 1 2 = invf Ig _ -_vacl2 . 
a~EVk 

We refer to [24, 27] for details on the iterative algorithm which generates the 
vectors ak . For the discussion here it is important to recall that typically the 
coefficient matrix v has to be multiplied with a vector once for each iteration, 
and that the algorithm depends on the chosen inner products. 
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In [27] we also discuss the convergence properties of the minimum residual 
method applied to systems of the form (1.2). It is established there that the 
convergence rate of the method is dominated by three parameters. These are the 
condition numbers of the matrices A and B, and a third parameter measuring 
the relative scaling between them. 

Let AO and AI denote the smallest and largest eigenvalue of A, respectively. 
Similarly, we let a0 and a, denote the extreme singular values of the rectan- 
gular matrix B; i.e., a2 and a2 are the extreme eigenvalues of BTB. The 
spectral condition numbers of the matrices A and B are then given by 

K(A)=Al/20O and K(B)=aI/ao. 

Furthermore, the relative scaling parameter, p = p(B, A), is given by 

p = co/lAo. 

We observe that the adjoint operation B -, BT depends on the chosen in- 
ner product. Hence, the quantities K(B) and p(B, A) are also inner product 
dependent. 

In order to guarantee fast convergence of the method, the scaling parameter 
p should be of order one, i.e., neither too small nor too large. On the other 
hand, if p is kept roughly fixed, the convergence rate will usually increase with 
decreasing values of K(A) and K(B). Hence, the purpose of a preconditioner 
for a properly scaled system is to tranform it into a new system of the form 
(1.2), with p essentially unchanged, but where the condition numbers of the 
matrices A and/or B have been decreased. 

The preconditioned minimum residual method discussed in [27] is defined 
by two symmetric, positive definite matrices M E RImxm and N E Rnfxn . We 
let q denote the block diagonal matrix 

The new preconditioned system now takes the form 

(4.3) gl 4 - b 

This system is clearly equivalent to (1.2), and the coefficient matrix, -1V, 
is given by 

NBM1AT 

Furthermore, the matrix M -IV is symmetric in an appropriate inner product. 
In order to see this, define a new inner product on RI by [4, XIM = (Mc, X) . 
Similarly, let [Ci, O]N = (NC, 6 ) be an inner product on RnJ, and finally define 
the inner product [, * ] on Rm x Rn by 

(4.4) [(4, q), (X, 0)] = [4,X]M +N OI0N. 

Then - _V is symmetric in the inner product [, *]. Furthermore, M-IA 
is symmetric and positive definite in the inner product [ , * ]M, and N-IBT 
is the adjoint of M-1B with respect to the two new inner products on RI 
and Rn . The preconditioned system (4.3) has therefore the same saddle point 
structure as the original system (1.2). Consequently, the minimum residual 
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method, with the inner product (*, *) replaced by [*, *], can be applied to 
the new system. 

In order to obtain an effective preconditioner, the matrix w must satisfy 
two properties. First, it should be easily invertible, or more precisely, it should 
be easy to solve linear systems with W as a coefficient matrix. This is because 
a system of this form has to be solved for each iteration. We observe that, since 
q is block diagonal, this is equivalent to require that the two matrices M and 
N are easily invertible. The second necessary property is that the minimum 
residual method applied to the preconditioned system should converge rapidly. 
From the discussion above we recall that, under the assumption of a proper 
scaling, this is the case if the condition numbers of the matrices M-1A and 
M-1 B are sufficiently small. 

We recall that the condition numbers and the scaling parameter are in general 
dependent on the inner products through the adjoint operation. We let K and ,p 
denote these functions with respect to the new inner products [ , *] introduced 
above. 

The condition number of M-1A, K(M-'A), is frequently estimated by es- 
tablishing inequalities of the form 

IOIXIOM < [M-1AX, X]M < A1 IXIM VX E Rm, 

for suitable constants AO and Al, since these inequalities imply that 

k(M-1A) < A-IIA0. 

Here, I * IM denotes the norm corresponding to the inner product [, ]M. 
Furthermore, from the definitions of the inner products we find that these in- 
equalities are equivalent to 

(4.5) Ao(MX, X) < (AX, X) < Al (MX, X) VX E IRm. 

Similarly, we derive that K (M-1B) is bounded by a&i/&o, where &o and al 
are constants such that 

(4.6) 602(N, 0) < (BTM-BO, 6) < a-2(NO, 6) VO EiR 

The second requirement for W is therefore fulfilled if M and N are symmet- 
ric, positive definite matrices such that (4.5) and (4.6) hold with ratios Al/2o 
and a&i/&o sufficiently close to one. Our conclusion is therefore that w is an 
effective preconditioner for v if M and N are effective preconditioners for 
the symmetric, positive definite matrices A and BTM-IB, respectively. 

Note that we are not interested in the matrices themselves. However, we 
must be able to calculate the action of M-l and N-, since this has to be 
done once in each iteration of the iterative method. 

Consider now the saddle point problem (2.4). Recall that the matrix A 
corresponds to the bilinear form a(u, v), defined in (2.3). It follows directly 
from (2.1) that 

(4.7) TolIVII2 < a(v, v) < T_lIvII2 Vv E V, 

with constants mO and rm . We note that, if (. , *) is the inner product on Rm 
induced by the L2-product on V, this corresponds to (4.5) with M equal to 
the identity matrix and Ai = Ti. Hence, if the ratio Tv I/O is not too large, the 
identity is an acceptable preconditioner for A. Throughout this paper, we will 
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therefore only consider preconditioners where M = I. We observe, in partic- 
ular, that the condition number of A is independent of the mesh parameter 
h. 

Having chosen M = I, we turn our attention to the problem of constructing 
a preconditioner for BTB. We start by deriving an expression for the bilinear 
form corresponding to BTB. Define the discrete gradient operator Vh: Q |-* 

V, corresponding to the matrix B in (1.2), by 

(4.8) (Vhq, v) =b(v, q) Vq EQ, Vv E V. 

Since b(v, q) = -(q, V v), the adjoint of B, corresponding to the L2- 
products on V and Q, is -PO(V.). Here, Po is an L2-projection onto Q. 
The inequality (4.6) therefore takes the form 

(4.9) 602N(q, q) < (Vhq, Vhq) < &71 N(q, q) Vq E Q, 
where N(., *) is the bilinear form associated with the matrix N. Hence, N 
should be chosen as a preconditioner for the nonconforming discrete Laplace 
operator -POV * Vh . 

Consider the discrete Poisson equation of the form 

(4.10) (Vhr, Vhq) = (1, q) VqEQ, 

where the unknown function r E Q. The condition (2.5) implies that this 
problem has a unique solution. Furthermore, it is easy to see that (4.10) is 
equivalent to the following problem of the form (2.4): 

(4.11) (w,v)+b(v,r)=0, VveV, 
(4.11) b(w, q) = -(1, q) Vq E Q, 

where w = -Vhr. Hence, the design of effective preconditioners N is closely 
related to the properties of this saddle point problem. 

Finally, we observe that when M = I the proper scaling factor for the pre- 
conditioned system, '(B, A), satisfies the inequality 

(4.12) &o/Thl < '(B, A) < 'a/To. 

Hence, since mo and Tl are fixed constants, the properties of a preconditioner 
are determined by the two constants &o and al appearing in (4.9). 

5. THE NEUMANN PRECONDITIONER 

In this section we shall describe a domain decomposition preconditioner for 
the linear system (2.4) based on subproblems with Neumann boundary con- 
ditions on the interior boundary F. We recall that our purpose is to design 
a preconditioner N such that the inequality (4.9) holds with the ratio a' /ao 
sufficiently close to one. If no preconditioning is performed, the bilinear form 
N corresponds to the L2 inner product on Q. In this case, (4.9) holds with 
&1 / - = O(h-'). The preconditioner studied below will reduce this ratio to 
O(h-1/2). Hence, the bound still grows with the size of the system, but more 
slowly than with no preconditioner. These bounds therefore indicate that the 
preconditioner will speed up the convergence of the iterative method consider- 
ably, but that the number of iterations required by the preconditioned minimum 
residual method will still increase with the dimension of the system. The nu- 
merical experiments, which will be presented in ?7, will indeed confirm these 
expectations. 
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We introduce the subspace Ho(div, Q) of H(div, Q) given by 

Ho(div, Q) = {v E H(div, Q): v * v = O}. 

Similarly, we let VO c V be given by Vo = {v E V: v * v = O} . Note that it 
follows from (3.2) and (3.3) that the interpolation operator H1 maps Ho(div, Q) 
into VO. Furthermore, flv satisfies, for any v E Ho(div, Q), 

b(flv-v,q)=O VqeQ. 

Hence, as above, the discrete inf-sup condition 

(5.1) inf sup b(v, q) > YO > ? (5.1) 
~~~~~qEQVEVo IIqII IVIldidjy 

follows from the corresponding continuous condition with VO replaced by 
Ho(div, Q). This latter condition is again equivalent to inf-sup conditions on 
the two subdomains. 

Let X E S be given and assume that (0 solves the boundary value problem 

A( = O in Q1 UQ2, 
(5.2) ( = 0 on OQ, 

V(p.v=X onF. 

Here, A denotes the Laplace operator. We observe that the uniquely determined 
function (0 is a harmonic function on each subdomain. Let qi = -V(o. Since 
V * = 0 on each subdomain, it follows from elliptic theory (cf., e.g., [25]) that 
qi and (o satisfy the a priori estimate 

(5.3) 11 Ildiv + 1Rll < CIXI-1/2, r 
Define w E V by w = HVi. From the continuity property of the interpola- 

tion operator Hl we then obtain 11w ldiv < CIXI-1/2,r. The following result has 
therefore been established. 

Lemma 5.1. There is a constant c, independent of h, such that for any X E S 

inf{llw Ildiv W E V, W . V = X} < CIX|I 1/2, rp. 

Define a new discrete gradient operator, VO: Q I-* VO, by 

(5.4) (Voq, v) = b(v, q) Vq E Q, Vv E VO. 

The bilinear form No which defines the Neumann preconditioner is now given 
by No(r, q) = (VOr, VOq). This bilinear form is obviously symmetric, and 
(5.1) implies that 

- (VOq ,v) b(v ,q) 
IlV0qII sup ?h sup ? yoIkiII. 

||h q E = VO lvii VEVo llVlldiv 

Hence, 

(5.5) NO(q, q) = IlV0qll2 > y21lq112 

for all q E Q. Consider the problem 

(5.6) No(r, q) = (1, q) Vq E Q 
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where the unknown function r E Q = Ql E Q2. If we let w = -V?r, then 
(w, r) E Vo x Q is the solution of the saddle point problem 

(5.7) (w, v)+b(v, r) =0, Vv e Vo, 
(5*7) b(w, q) = -(1, q) Vq E Q 

It is easy to see that this problem decouples into saddle point problems on each 
subdomain. Hence, with the proper choice of finite element spaces, this problem 
can be solved by a fast solver (cf. ?7). 

The purpose of the rest of this section is therefore to discuss the efficiency of 
this preconditioner, i.e., to derive an inequality of the form (4.9). 

For each q E Q, let V^rq E V be given by 

VF'q = Vhq-VVq. 

Note that it follows from (4.8) and (5.4) that (V'rq, v) = 0 for all v E Vo. In 
particular, (Vhrq, V5hq) = 0, and hence 

IVAhqII = IV0q 112 + IIVhrqI2. 

It therefore follows that the left side of inequality (4.9) is satisfied with Io = 1. 
The following result shows that 'a = O(h-1/2). 

Theorem 5.2. There is a constant c, independent of h, such that 

IIVhqII < ch 1/211V5qii Vq E Q. 
Proof. Introduce the bilinear form R(v, q) given by 

R(v, q) = b(v, q) - (VOq, v). 

By (4.8) and (5.4), it follows that 

(5.8) (Vrqq, v) = R(v, q) Vv E V. 
Furthermore, R(v, q) = 0 for all v E V0 . Therefore, for each given q E Q, the 
bilinear form R( *, q) can be considered to be a linear functional on S = Sh (F) . 
Hence, for each q E Q there exists a unique element [q] E S such that 

(5.9) ([q], vv)r=R(v ,q) Vv E V. 

The element [q] E S should be interpreted as the "jump of q at F ." The 
relation (5.8) can now be rewritten in the form 

('V^rq, v ) = ([q] , v * v) VV E V . 

Hence, by the inverse assumption (3.5), 

h17qll = sup (Vhqv = sup (qv v) h VEV IIvI 11 VEV IIvII1 
< I[q]lrsup IV vir- < ch-1/21[q]lr 

VEV llvii 
or 

(5.10) t aVriqll < ch-1p2n[q]lanh 

where the constant c in independent of q and h. 
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On the other hand, from (5.9) we obtain 

I[q]Ir' = sup([q], X)r =sp R(w, q) 11WIldiv 
XES IxIr, XES liWIlidj IXIr 

< (1q 112 + IIVoqI2)1/2 sup 
IIWldiv 

XES lXii-' 
where w E V is any function such that w * v = X on F. Hence, from (5.5) 
and by selecting w such that 11wlldiv/1x- 1/2,r is minimal, we obtain from 
Lemma 5.1 that I[q]Ir < cllVOqll. Together with (5.10) this implies that there 
is a constant c, independent of q and h, such that 

(5.11) |lVr'qll < ch-1/2 liVoqll 

We therefore conclude that 

IlVhqI1 = (iiVhq 112 + IVrq 112)1/2 < ch-1/2 IIV?qII 

for a suitable constant c. El 

6. A DIRICHLET PRECONDITIONER 

The domain decomposition preconditioner developed in the previous sec- 
tion was based on subproblems with a Neumann boundary condition on the 
interior boundary F. In contrast, the efficient domain decomposition precon- 
ditioners for systems arising from conforming finite element discretizations of 
elliptic equations are based on the solution of some subproblems with an inte- 
rior Dirichlet condition (cf., e.g., [3, 6] or [7]). In this section we shall develop 
corresponding preconditioners for the systems arising from mixed finite ele- 
ment methods. The preconditioners studied below are based on the solution of 
subproblems with Dirichlet boundary conditions on the interior boundary, and 
correspond to the ones studied in [3, 6]. Since these preconditioners involve 
independent problems on each subdomain, they can, as in [6], be generalized 
to domains with a more complex substructure. However, in this paper we will 
only consider the two subdomains case studied above. In particular, we will 
show that, in the case of two subdomains, the appropriate condition numbers 
are independent of the discretization parameter h. 

Since the Dirichlet boundary conditions are natural boundary conditions in 
the mixed finite element method, the discrete system (2.4) will be slightly gen- 
eralized. Instead of (2.4) we introduce the following generalized system: 

Find (Uh, Ph, Ah) E x X Q x S* such that 

a(Uh,v)+b(v,Ph)+(Ah, [V v])r=G(v) Vv E V, 

(6.1) b(uh,q)=F(q) VqEQ, 
(A, [Uh V])p = O VA ES*, 

where we recall that the space V and the bilinear form b( , * ) are defined 
in ?3. In particular, the extended form b ignores the possible jumps at F. A 
similar convention is used for the norm 11 Ildiv below, i.e., the norm is defined 
by summing the contributions from each subdomain. 

The system (6.1) arises naturally if the elliptic equation (1.1) is discretized by 
a mixed finite element method on each subdomain, and if the interior boundary 
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conditions [p] = 0 and [u v] = 0 are required on F. We observe that (6.1) is 
a generalization of (2.4) in the sense that if the triple (Uh, Ph, Ah) solves (6.1) 
then the pair (Uh, Ph) solves (2.4). Furthermore, Ah E S* is an approximation 
of the trace of p on F. 

The system (6.1) has the saddle point structure (1.2). The following con- 
sequence of the assumptions given above shows that this system satisfies the 
proper inf-sup condition. 

Lemma 6.1. There exists a constant yl, independent of the mesh parameter h, 
such that 

(6.2) inf sup b(v, q) + (y, [v * v])r > Y > 0. 
(q,pU)EQXS* VEVT (IIlli + I1I1/2,F)IIvIIdiv 

Proof. As above, the result follows from a proper application of the interpo- 
lation property (3.3). Let (q, u) E Q x S* be given, and consider elliptic 
equations of the form 

A( = q in Q1 U Q2, 

(0=0 onOQ, 
(6.3) [(0] = 0 on F, 

[Vo * v] = X on F, 

where X E H-1/2(r) is arbitrary. Let qi = V(o. Then qi E H(div, Q1) E 
H(div, Q2) and from elliptic regularity (cf. [18]) it follows that 

(6.4) IIVlIdiv + Ro ll ?< c(Illql + IXI-1/2,Fr) 

for a suitable constant c independent of q and X. Furthermore, 

b(qi, q) + (t, [v * v])r = 1jq112 + (ii, X)r . 
By choosing X such that IXI-1/2,r = 1u11/2,ir and (At, X)r > I4uI12 ,r/2, we 
therefore obtain from (6.4) that 

(6.5) b(q>, q) + (t, [v]) ? c(||q|| + uI1Y/2,r) 

11 k/l1div 
for a suitable positive constant c. 

Let v E V be given by v = Hlqi. Since IIVIIdiv < cI VIIdiv and (3.3) implies 
that 

b(q', q) + (1, [v * v])r = b(v, q) + (u, [v * v])r, 

the desired result now follows from (6.5). 0 

Define the extended discrete gradient operator Vh: Q x s* V by 

(6.6) (Vh(q, J), v) = b(v, q) + (t, [v * v])r V(q, ) E Q X S*, V E v. 
This extended gradient operator is associated with the system (6.1) in the same 
way as the operator Vh is associated with (2.4). Therefore, in order to design 
an effective preconditioner for this system, the bilinear form 

(6.7) (oQ S(rh, C), hao p (qr od )) 

defined on (Q x S*)2 , has to be preconditioned. 
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We note that, for any (r, t) E Q x S* 

IIVh(r, r)II = SUp (Vh(r, C), v) 
IlV h(r. ( V h(=rsup),v ) _ _ _ _ _ _ _ 

VE- 

(> sup l 1>)1 v) =spb(v , r) + (r , [v * v])r, 
? sup =SUP 

Hence, we derive from (6.2) that 

(6.8) IIVh(r, q)II > yl(IIrII + I6I1/2,r) 

The bilinear form (6.7) is therefore an inner product on Q x S* . 
In order to define the desired preconditioners, we consider an orthogonal 

projection of elements in the product space Q x S* into Q x {0} with respect 
to the inner product (6.7). For an arbitrary element (r, t) E Q E S* consider 
the unique orthogonal decomposition of the form 

(6.9) (r, C) = (ro, 0) + (rH, 
H ) 

Hence, ro E Q is determined by 

(6.10) (Vh(ro, 0), Vh(q, 0)) = (Vh(r, C)), Vh(q, 0)) Vq E Q. 
Furthermore, if we let wo = -Vh(r0, 0), then the pair (w?, r?) E V x Q 
satisfies the saddle point problem 

(6.11) (w0, v) + b(v, r?) = O vv v V, 
b(w?, q) = -(Vh(r, ti), Vh(q, 0)) Vq E Q. 

Similarly, if we let wH= Vh(rH, t), thenthetriple (wH, rH, t) E VxQxS* 
satisfies 

(6.12) (WH ,v) + b(v, rH) = (, [v.v])r Vv E V, 

b(wH, q) = 0 Vq E Q 

The function rH given in the decomposition above is a mixed finite element 
approximation of a harmonic extension of the boundary function q. This 
observation motivates the following simple result. 

Lemma 6.2. Consider the orthogonal decomposition (6.9). There is a constant 
c, independent of h, such that 

Illh(r , 5)11 < CM 11l2,F. 

Proof. Since b(WH, rH) = 0, it follows immediately from the system (6.12) 
that 

(6.13) IIwHl12 = _(q , [wH.v])r. 

Furthermore, since (3.4) implies that llwHIldiv = IIwHIi, we obtain that 

i[WH * V]|_1/2 < cllwHlldiv = cIIwHll. 

Hence, the desired result follows from (6.13). El 

We note that the estimates given by (6.8) and Lemma 6.2 imply, in particular, 
that for any (r, ) E Q x S* 

,.1". g117.{H "1 ll 
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Since the decomposition (6.9) is orthogonal, it therefore follows that the two 
norms 

(6.14) 11Vh(r, q)1I and IIVh(rO, 0)11 + Iqh1/2,rr 

are equivalent, uniformly in h, on the space Q x S* . 
Motivated by this equivalence, we therefore consider preconditioners of the 

form 
N((r, C), (q, A)) = (Vh(rO, 0), Vh(q?, 0)) + (Aq, ,U)r 

for the bilinear form (6.7), where A: S* i ' S* is a discrete operator on the inte- 
rior boundary F which is symmetric with respect to the inner product ( *, )r, . 
The following result is now an obvious consequence of the equivalence (6.14). 

Theorem 6.3. Assume that there is a constant cl, independent of h, such that 
the operator A satisfies 

(6.15) cl I?1I12, < (A1, ?1)r < ci1jIq2,p V1 E S* 

Then there is a constant C2, independent of h, such that 

c2 N(,C,(,C) I^r )l < C2NV((r, C), (r, C)) Vl(r, C) E Q x S*. 
This result shows that if the boundary operator A is chosen such that (6.15) 

holds, then the preconditioner N transforms (6.1) into a saddle point problem 
with conditioning independent of the discretization parameter h. 

Consider the linear systems of the form 

(6.16) N((r, r), (q, A)) = (1, q) + (lo, 1U)r V(q, /i) E Q x S*, 

where the data (1, lo) E Q x S* is given. We observe that when N is used as a 
preconditioner, such a linear system has to be solved once for each iteration. If 
the operator A satisfies (6.15) above, then N is positive definite on Q xS*, 
and hence (6.16) has a unique solution (r, rj) E Q x S* . By decomposing this 
solution according to (6.9), we derive from (6.1 1) that 

(w?, v) + b(v, ro) = O Vv EV, 
(6.17) 

b(w?, q) =- (1, q) Vq E Q, 

where, as above, w0 = -Vh(rO, 0) E V. Furthermore, this problem decouples 
into discrete Poisson equations on each subdomain. With the proper choice of 
subspaces, this problem can therefore be solved by a fast solver. 

When (ro, w?) E Q x V is computed, it remains to find the orthogonal 
component of the solution, (rH, q) E Q x S* . However, it is enough to find q , 
since rH can then be calculated from (6.12). This system again corresponds to 
discrete Poisson equations on each subdomain. 

In order to derive a suitable equation for j, we consider (6.16) with test 
functions of the form (q, ,u) = (qH, i). Let wH = -Vh(rH, ). Since 
(wH, WO) = 0, we obtain from (6.17) that 

(A1, j)r = (1, qH) + (1o, j_)r 

- b(w?, qH)+(lo, ,U)r= (,u, [w? *V])r + (lo, ,)r, 

or 

(6.18) Aq = P*[w * I + lo, 
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where P*: L2(r) _ S* is the L2-projection onto S*. This equation is a dis- 
crete system related to the interior boundary F. Since F is one-dimensional, 
we can usually afford to solve such systems (cf. ?7). 

The results above can be used in two different ways to define preconditioned 
iterative methods for the system (2.4). From the discussion above, the obvious 
approach seems to be to replace the system (2.4) by the generalized system 
(6.1) and then use the bilinear form N as a preconditioner for the form (6.7). 
However, this strategy leads to approximate solutions of (6.1) (or (2.4)) with 
a possible small jump on the interior boundary. In the calculations below we 
have therefore used an alternative approach. 

Consider the original discrete system (2.4). Our purpose is to use the equiva- 
lence given in Theorem 6.3 only to design a preconditioner for the bilinear form 
(Vhr, Vhq) on Q2. In order to see how this can be done, we first observe that 
if Vh(r, j) E V, then Vh(r, ) = Vhr. Furthermore, from (3.2) and (6.2) it 
follows that for a given r E Q there is a unique element rj(r) E S* such that 

(6.19) (qj, [V V])F = (Vhr, v) - b(v, r) Vv E V, 

or equivalently, for each r E Q there is a unique element r1(r) E S* such that 
Vh(r, C) = Vhr. 

Define now the bilinear form N on Q2 by 

(6.20) N(r, q) = N((r, qj(r)), (q, qj(q))). 

From the discussion above it follows that if the hypothesis of Theorem 6.3 is 
satisfied, then N(r, r) and (Vhr, Vhr) are uniformly equivalent on Q. There- 
fore, the bilinear form N can be used as a preconditioner for the original system 
(2.4). Furthermore, the linear systems 

(6.21) N(r, q) = (1, q) Vq E Q, 

which have to be solved for each iteration of the minimum residual method, 
are equivalent to the system (6.16) with lo = 0. 

The conclusion of this section is that we have generalized the domain de- 
composition preconditioners studied in [3, 6] to the systems derived from the 
mixed finite element method. In the same way as with conforming finite element 
methods, these preconditioners require that suitable discrete Poisson equations, 
together with a system on the interior boundary, can be solved by sufficiently 
fast solvers. 

7. NUMERICAL EXAMPLES 

The purpose of this section is to present some numerical examples obtained 
by using the preconditioners developed above. Therefore, in particular, we have 
to construct spaces Q, V, S, and S* satisfying the desired properties required 
in ?3. 

In the examples below, Q will be an L-shaped domain like the one given 
in Figure 3.1. It is composed of three of the four subsquares obtained by 
dividing the unit square into four equal squares. The domain is subdivided, in 
a uniform manner, into axiparallel squares of size h. In particular, the grid 
is chosen such that the interior boundary F coincides with boundaries of the 
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squares of the grid (cf. Figure 7. 1). On this grid we will apply the quadrilateral 
Raviart-Thomas elements of order zero (cf. [25]). Hence, the functions in Q are 
constants on each grid element and, as required in ? 3, Q = Ql ED Q2, where Qi c 
L2(J21). Similarly, the components of a vector v E V are either constant or 
linear on each element, and V = V1 ED V2, with Vi c H(div, Qj). Furthermore, 
the functions in S are piecewise constants on the interior boundary F. 

When the above subspaces are applied, the linear systems associated with the 
subdomains may be solved by fast Poisson solvers. In particular, if a certain 
combination of the midpoint and the trapezoid rules for numerical integration is 
used in the evaluation of the integrals, discrete Poisson problems corresponding 
to the five-point finite difference scheme have to be solved on the subdomains 
(cf. [26]). 

By a proper parametrization each segment of F can be considered to be the 
unit interval I. The elements of S are then constants on the subintervals of the 
form ((i- 1)h, ih) for i = 1, 2, ..., k, where k is the dimension of S and 
h is a proper scaling of the grid parameter h. On I, the space S* is required 
to be a subspace of Ho (I). We let S* consist of all piecewise linear functions 
in Ho (I) with possible discontinuities of the slopes at the points (i - 1/2)h 
for i = 1, 2, ... , k. Hence, S and S* are spaces consisting of functions on 
I which are piecewise constant or piecewise linear, respectively. However, the 
piecewise polynomial spaces are generated from different sets of knots. We also 
observe that 

dim(S*) = dim(S) = k. 

Consider the assumptions on the spaces V, Q, S, and S* given in ?3. It is 
easy to see that the spaces S and S* defined on I above satisfy the condition 
(3.2). In fact, if X E S is given and ,u E S* interpolates X at the points 6i, 
then 

The conditions (3.4) and (3.5) are also easy to check. In particular, (3.4) 
follows since V v E Q for any v E V, and the inverse assumption (3.5) 
follows from the uniformity of the grid. 

F 

FIGURE 71 T i l I 

FIGURE 7. 1. The domain Q with a square grid 



PRECONDITIONERS FOR ELLIPTIC SADDLE POINT PROBLEMS 43 

Finally, in order to verify all the assumptions given in ? 3, we have to construct 
the uniformly bounded interpolation operators 

H1: H(div, Qj) ED H(div, Q2) V 

such that the condition (3.3) holds. If the term on the interior boundary had not 
appeared in (3.3), the construction of a suitable operator H is, e.g., described 
in [16]. However, in order to extend this construction to the present case, the 
boundary term has to be treated properly by the operator H. 

The operator H can be constructed independently on each subdomain. It is 
therefore sufficient to consider the construction of the interpolation operator on 
the unit square, Q, with a regular square grid, and where the interior boundary 
is represented by the edge F= {(1, y): y E I} (cf. Figure 7.2). 

Furthermore, we let V and Q be the corresponding Raviart-Thomas ele- 
ments of order zero on Q. The boundary of Q is denoted by aQ, while the 
exterior unit vector normal to aQ is i'. In order to simplify the notation, we 
let S and S* denote the finite element spaces on F implied by the construction 
above. Below we shall construct interpolation operators H: H(div, Q) | > V, 
uniformly bounded in h, such that 

(7.1) b(hv -v, q) + (A, (Hv -v) ')? = O V(q, A) E Q x S*, 

where b is the bilinear form b restricted to Q. This construction can easily 
be modified to cover all the three components of the subdomains in the present 
case. The general condition (3.3) will therefore follow from (7.1). 

Since the grid on Q, in particular, generates a partition of the boundary 0Q, 
the spaces S and S* can be extended, in an obvious way, to discontinuous 
constants and continuous piecewise linear subspaces of H' (0 Q) and L2(0Q), 
respectively. These spaces on aQ will be denoted Se and S*. In particular, 
since the knots of the partition generating the finite element space Se* are located 
in the middle of the grid edges on a Q, the tangential derivatives of an element 
in Se* are assumed to be continuous at the corners of Q. Furthermore, any 
element ,u E S* can be extended to an element ,ue of Se* by defining ,ue to be 
O outside F. 

It is easy to see that dim(Se) = dim(Se*), since the degree of freedom for 
both spaces is equal to the number of subintervals on aQ generated by the 
interior grid. Furthermore, by using interpolation relations between the spaces 
Se and Se* at the midpoints of these subintervals, it is easy to verify that there 

FIGURE 7.2. Reference domain Q 
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exists a constant ao > 0, independent of h, such that 

(7.2) inf sup (ii 2 > x) o and inf sup ( Q > ceox 
XESe,UESe IUI09QIxI0Q ?0ESe* XES, IiIx ? 

In addition to the spaces introduced so far, we will also, for technical reasons, 
introduce the subspace Z of HI (Q) consisting of bilinear continuous functions 
with respect to the grid on Q. Furthermore, we let ZB denote the restrictions 
of functions in Z to au. 

We observe that the space ZB consists of continuous piecewise linear func- 
tions on aQ with respect to the same partition that generates the piecewise 
constant space Se. Hence, translation by half the grid size represents an iso- 
morphism between ZB and S*. Also observe that if q E ZB, then qt E Se, 
where qt is the tangential derivative of q in a counterclockwise direction. Fur- 
thermore, if z E Z and v is the divergence-free vector (zy, - zx)T, then 
v E V. 

We start the construction of the interpolation operator H: H(div, Q) | > V 
by introducing two discrete operators on the boundary a Q. 

Define J and J*, from L2(0Q) into Se and Se*, respectively, such that 

(Z? A)Q =(?, y),- Vy E Se* 
and 

(J*f SX%)0 = (X), X),- VX E Se. 
We observe that J and J* are dual operators with respect to the inner product 
on L2(aQ), and it follows from (7.2) that 

(7.3) IPO I*I -1I : 

Hence, the operators J and J* are stable in L2(0a). 
However, in order to derive the desired properties of the operator 11, we 

shall need a similar stability property for the operator J, or more precisely, for 
an extension of J, in H-U/2(OQ). In order to derive this stability property, 
we observe that it follows from the construction of the spaces Se* above that 
there is a constant c, independent of h, such that the following approximation 
property and inverse property hold: 

(7.4) in f o-Ii0j?ch < chl1p V(O E H1(0Q) 

and 

(7.5) J#1" 9^Q< ch-1FUI49^ V E Se* . 

From these properties we can easily derive that the operator J* is stable in 
H1 (O0Q), i.e., there is a constant c, independent of h, such that 

(7.6) IJJ*I 109 < Cko1 ̂ - V8O E H1(0e ) . 

In order to see this, let (0 E H1 (O0) be arbitrary and let (0* E Se* be the H1- 
projection of ( . Then I of1 l9Q < I f I I "9^ . Furthermore, for any v E L2(0 Q) 
and i E Se, 

(J* O - f0 X /),O- = (O -IAX JV/ - V/),O( 
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and hence it follows from duality, (7.3), and (7.4) that I J* Dp - f * ?a- < chIp l . 

Hence, by (7.5), 

lJ*Il1,a9 < ch-'IJ*o - 0*109Q + ko*Ii,oii< C? I co Qj 

which is the desired bound (7.6). 
Note that by interpolation, (7.3) and (7.6) imply that 

IJ F1I2fQ <ClFl/2 VQ O E H'12(a9Q) lj*012,? C0o11120,aVo 
and by duality we therefore obtain that 

(7.7) ?J?I- Q < ckl 1/2o O E He 

This is the desired stability of J in H- K2(OQ). 
The construction of the operator 1I is based on a proper decomposition of 

elements in H(div, Q) in a gradient vector and a divergence-free vector. Let 
v E H(div, Q) be arbitrary, and consider the boundary value problem 

(7.8) A=Vv inQ, 

V . i7 = m(v) onOQ, 

where m(v) is the mean value of v * v on aQ. This problem has a solution 
p which is uniquely determined up to constants. Furthermore, if v =- Vfo, 
then v' E (H' (Q))2, and there is a constant c, independent of v, such that 

IIv'lli < cIV E v vll, where *I I denotes the norm on H' (Q) (or (H1 (Q))2). 
Hence, as in [16] we can define an element Hlv E V by reproducing the 

average values of the normal components of v I on each edge of the squares of 
the grid. By construction, the function [I v has the property that 

(7.9) b(fl'v-bv, q) =0O Vq E Q 

and 

(7.10) vlv.P = m(v) on an. 

Furthermore, there exists a constant c, independent of v, such that 

(7.11) f1 IlVIldiv < CIIv Ildiv 

The function flv approximates the gradient part of the vector function v . 
We also need an approximation of the divergence-free component of v. Let 
V E H-1"2(aQ) be given by V - v * P - m(v). Then 

Therefore, there exists an element q E ZB, uniquely determined up to con- 
stants, such that qt = J V, where, as above, qt denotes the tangential derivative 
of q in a counterclockwise direction. Furthermore, let r E Z be the solution of 
the discrete Poisson equation defined by the conforming finite element method: 

Find r E Z such that 
(Vr, Vz) = 0 Vz E Z, 

(7.12))Ijj= nQ 
rja- = on0Q 
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This problem has a unique solution. Furthermore, we can argue as in [7] (cf. 
also Lemma 3.2 of [6]) and conclude that lIrIlI < C?q 112 aQ, where the constant 
c is independent of q . Observe also that the trace inequality V/I Q < 

clv lldiv holds. Hence, it follows from (7.7) and the fact that the map q t 
is continuous from H'/2(&Q) to H-1/2(&Q) that lHrlI <? ClIVlIdiv. 

Define now h2v = (ry, -rx)T . Then, since V (F2v) = 0, it follows that 

(7.13) Il2vidiv < CIIVlidiv. 

Since fi2v is divergence-free, it is also obvious that 

(7.14) b(H2l q)=O VqEQ. 

Finally, for any ,u E S*, 

(7.15) - (,u m(v))?, 

where, as above, ,Ue is the zero extension of ,u. The desired operator n is 
now defined by letting flv = 1v + H2v. The uniform boundedness of these 
operators follows from (7.1 1) and (7.13), and the desired property (7.1) follows 
from (7.9), (7.10), (7.14), and (7.15). 

In order to complete the construction of a Dirichlet preconditioner as studied 
in ?6, we also need an operator A: S* - S*, symmetric with respect to the 
inner product on L2(r), such that the bounds (6.15) hold. However, since 
S* c Ho (F) is a space consisting of piecewise linear functions with respect to a 
uniform partition, we can adopt the construction given in [6] and use the "square 
root of the discrete second derivative along F ." Furthermore, as described in 
[6], equations of the form (6.18) can be solved by the Fast Fourier Transform. 

In all the calculations, g = 0, i.e., the elliptic equation has homogeneous 
Dirichlet boundary conditions. Furthermore, f(x) = 2, and the initial ap- 
proximation in the minimum residual method is set to zero. The iteration is 
terminated when the norm of the residual, induced by the inner product (4.4), 
is reduced by a factor of 10-5. 

Example 7.1. In the first example we solve the Poisson problem, i.e., we choose 
K(x) to be the identity matrix. The number of iterations, with and without 
preconditioning, are listed in Table 7.1. These results seem to confirm that 
the Dirichlet preconditioner results in a linear system where the number of 
iterations required by the minimum residual method is independent of h. Fur- 
thermore, the application of the Neumann preconditioner reduces the number 
of iterations considerably. Also, as expected from the analysis given in ?3, the 
increase in the number of iterations, when the mesh parameter h decreases, is 
slower when the Neumann preconditioner is applied than without a precondi- 
tioner. o 

Example 7.2. In the next example we consider a variable-coefficient problem 
with the matrix K(x) given by 

It + t14(X2 + X2) 3X1 X2 A 
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In this example the condition number of the matrix A, corresponding to the 
bilinear form a(. , *), is larger than in the previous example, but still inde- 
pendent of the mesh parameter h. We therefore expect the minimum residual 
method to use more iterations to converge than in the previous example. How- 
ever, the dependence of the convergence rate on h should be comparable with 
the previous Poisson example. Table 7.2 seems to indicate that this is also the 
case. ol 

We note that the performance of our method depends only on the condition- 
ing of the involved operators, not on the structure of A. We use exactly the 
same preconditioner in Example 7.1 and Example 7.2, and the work in each 
iteration is virtually the same. In contrast, a method requiring the inversion of 
A, or the exact inversion of the given problem on the subdomains, will require 
much more work for the variable-coefficient problems in Example 7.2 than for 
the Poisson problem in Example 7.1. This is because the nondiagonal form of 
the matrix K will make the band structure of the matrix A more complex. 

TABLE 7.1. Number of iterations for the Poisson example 

h 1/16 1/32 1/64 1/128 

# it. no preconditioner 75 139 271 544 

# it. Neumann preconditioner 14 18 22 30 

# it. Dirichlet preconditioner 10 12 12 12 

TABLE 7.2. Number of iterations for the variable-coefficient example 

h 1/16 1/32 1/64 1/128 

# it. no preconditioner 174 325 627 1323 

# it. Neumann preconditioner 71 86 104 138 

#it. Dirichlet preconditioner 62 68 71 72 
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